
Designing Tools for 
DESIGN SOFTWARE 
A manifesto for programmers 
written by a designer   

Designing an intelligent and intuitive design software 
that closely mirrors the intentions, thought process and 
workflows of creative professionals is notoriously difficult. 
Often, this is a war between design professionals and 
programmers. Few designers are programmers. Fewer 
programmers are designers. They don’t think in similar 
terms; share similar concepts; or evaluate themselves 
against similar benchmarks. 

While programmers have some idea of the end user’s 
needs and goals, their answers to these needs and goals 
often focus on pure, brute performance. If a software can 
achieve the designer’s goals without the overall 
performance suffering in any obvious way (remember 
that fan whirring sound?), a programmer would consider 
this a good day. But the story a designer would tell is 
quite different. 

The designer would tell the programmer that mere 
performance counts for nothing if the actual workflow is a 
mess. A good design software is not merely performant 
but also deeply intuitive to the designer. It mirrors the 
intentions, the mental steps designers have to take to get 
to their desired result. 

Of course, designers are shaped in their intuitions as 
much by design software as design software are shaped 
by designers. But every designer worth his salt would 
argue that this mutual shaping is heavily biased in the 
favour of design software. Entire generations of digital-
first designers have cultivated poor intuitions by working 
with substandard software. Software that are performant, 
but ultimately, pardon the language, fucking dumb. 

This manifesto is written by a designer with intention of 
making common cause with programmers; of finding a 
common language that we can both understand. It is not 
a technical language. It is plain English. Plain-speaking is 
so direly missing in both our worlds. So let’s try. 

Here’s how the manifesto is structured: First, it will set 
out the terms and the principles. Then, it will 
demonstrate through a simple visual matrix, how these 
terms and principles may be applied for our mutual 
benefit. 

The Terms
Or words we can share 

1. Unify: Merge actions into a single tool to reduce the 
need for tool switching.  

2. Modify: Allow actions to be done with a different tool 
by calling it temporarily through modifier keys. 

3. Oppose: Allow a tool to perform the opposite action 
of its normal action temporarily through modifier 
keys.  

4. Group: Group tools into a single tool setting or 
dialogue box to reduce the need for navigation. 

5. Stay: Make dialogue boxes and tools settings to stay 
on screen (non-modal) until the user chooses to 
close, whilst allowing interaction with the rest of the 
software. 

6. Direct: Allow a tool to be used directly and 
dynamically on the screen, without the need for extra 

tool settings and dialogue boxes for at least the first 
set of actions. 

7. Even: Make different tools to act in the same way.  

8. Extend: Make the functions of one tool to be 
available to a different tool. 

9. Expand: Introduce new modes of operations to a 
tool.    

Those are, in my opinion, the only 9 terms we need to 
have a common language. They’re simple enough for 
designers and programmers to understand and wide 
enough to accommodate everything they need to work 
together. 

So what are the principles? 

Principles 
or guardrails to work together 

1. If two or more tools do logically or sequentially 
related actions, unify such tools.

2. If usability would suffer by unifying tools that 
perform logically or sequentially related actions, then 
allow the tools to be temporarily called up with 
modifier keys. 

3. If two or more tools are logically or sequentially 
related, but cannot be unified, then group such tools 
in to fly into a single tool setting or dialogue boxes.    

4. If two tools perform logically related but opposite 
actions, then allow the tools to be called up with 
modifier keys. 

5. If a dialogue box or tool setting will be accessed 
repeatedly as a part of a series of actions, then allow 
such tools to stay on screen until the user chooses 
to close it and allow interaction with the rest of the 
software.  

6. If an action requires immediate visual feedback, 
make the tools for doing these actions direct and 
interactive on screen. 

7. If there are two or more related tools, which are 
neither united, nor modified, nor opposed, make 
them act in the same way. 

8. If two or more tools are similar but not logically or 
sequentially related, then make the functions of one 
tool available to others. 

9. If a tool can be made more useful either through 
additional modes or compatibilities, add such 
modes and compatibilities. 

And those are all the 9 principles we’ll ever need, in my 
opinion. Now, let’s see how you can turn these principles 
into useful actions for programmers.    



Relationship Logically 

related 

Sequentially 

performed

Iteratively 

performed

Mutually 

complementary

Similar in 

action
Current Solution Tool simplification 

Actions

Create vector 

shapes

Curve Creation

Create straight 

lines

Create 

Line

Modify, unify or expand with curve creation and vector drawing 

tools

Draw vector 

shapes 

Vector 

Drawing

Expand with curve creation tool 

Move vector 

points

Curve creation & Edit 

vector points

Unify with curve creation tool

Move vector 

paths

Edit vector points & 

Transform vector points

Unify with curve creation

Add vector 

points

Edit vector points & 

insert vector points

Group and oppose with curve creation and create line tools

Delete vector 

points

Edit vector points Delete 

vector points

Group and oppose with curve creation and create line tools

Move vector 

point handles

Curve creation & Edit 

vector points

Unify with curve creation

Transform 

vector points

Transform 

vector points 

Modify with edit vector points tools

Covert to 

smooth & sharp

Covert vector points Unify or modify with curve creation, create line and vector 

drawing tools

Align vector 

points

Automatic Make even: Allow object alignment for vector points too

Join vector 

paths

Connect vector paths Group and oppose with cut vector path tools

Cut vector 

paths

Cut vector path Group and oppose with join vector path tools

Optimize Vector 

layer

Optimize Vector layer Stay and direct: Make this available as a slider with the curve 

creation and vector drawing tool settings. 

Create vector 

fill

Flood tool Make even: Allow flood fill to be available within vector tool bar


	Page 1
	Page 2

